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Outline

p Brief Introduction to Peregrine Semiconductor and 
UltraCMOS™

p Tunability Defined
p Antenna Frequency & Impedance Tuning
p Amplifier Multi-Mode Operation
p The Power of CMOS Integration

h Power Control
h Digital, Analog, RF

p Conclusion
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UltraCMOS™ Integrates Best In Class Performance

p RF Power Applications
h Good linearity
h High mobility
h High power handling
h Good isolation

h All positive attributes of CMOS

h All positive attributes of GaAs

h All positive attributes of IPD

h Additional Unique Properties

Integrated 
Passive DeviceGallium ArsenideBulk CMOS

p Passive Integration
hMiniaturized passive blocks
hMinimized parasitics
hLithographic interconnect

+ Broadband Linearity

+ Unprecedented Isolation

+ High ESD Handling

+ Onboard Memory - EEPROM

UltraCMOS™
UltraCMOS™

p Monolithic Integration
h Manufacturable
h Transferrable
h Repeatable
h Scaleable
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UltraCMOS™ - The Ultimate RF CMOS Technology

p The sapphire substrate 
eliminates the bulk 
parasitics!
h Fast devices
h Ultra low power loss
h Excellent linearity
h Unprecedented isolation
h Ability to integrate high Q 

passives
h Ability to integrate multiple 

RF / mixed signal / digital
functions monolithically
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Tunability Defined – 3G Handset Architecture

Antennas
- Frequency
- Impedance
- TRP/TIS

Amplifiers
- Frequency
- Mode
- Power & PAE

Filters
- Pass Band
- Notch Frequencies
- Insertion Loss, Rejection
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Why Tunability?

p The Number of Handset Frequency Bands continues to increase
h Moving from 2G Quad Band to 3G/4G 7-12 band Smart Phones
h Drives the complexity and increases the number of discrete, fixed frequency 

components 
p Tunability helps reduce the total Bill of Material

h Multiple Antennas, PAs, Filters are replaced with fewer, tunable elements
p Reduce total board area with fewer components
p Tunability leads to improved communication link performance

h Improved TRP & TIS leads to lower BER, fewer dropped calls
p Improve battery talk time

h Antenna impedance matching is the most straightforward means to improve 
TRP by >3dB
3 The PA Power savings drops directly to the talk time “bottom line”

h Improve Tx efficiency level over entire PDF 
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Antenna Frequency and Impedance Matching

p Frequency Tuning of a PIFA Antenna 
with an Variable Loading Impedance
h Single antenna with minimal volumetric size 

can address multiple bands

p Impedance Matching of Antenna to 
address EM Proximity Effects

600 700 800 900 1000 1100 1200
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Insertion Loss in 50ohm Pass-Thru state

In
se

rti
on

 L
os

s 
[d

B
]

Frequency [MHz]

 

 
S21
Spec

Dual-Resonant 
Tuner with 
Tunable Coupling

Identical 
DTCs

4.7nH 
Q=90 @ 
900MHz

S11

4.7nH 
Q=90 @ 
900MHz

-25

-20

-15

-10

-5

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

Freq (MHz)

S
11

 (d
B

)

S11_Freq1

S11_Freq2

Term

Feed
Imped



8

Wireless Innovation Forum 2010

RF Front-End Mismatch Loss Tuner

Implementation and Control
p RF Front-end mismatch tuning device controlled by a closed loop mismatch sensing 

device and tuning algorithm
p The sensing and tuning algorithm can be implemented several ways

p Fully autonomous subsystem – turn it on and it tunes
p Controlled by BB/DSR core processor chip

Pro’s and Con’s
p Improves static and dynamic mismatch 

loss
p Complex system design
p Requires close co-operation with 

handset/network provider to implement 
solution
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Added Design Complexity and Constraints

p With Tunability come 
new design 
challenges
h e.g. Avoid High Voltage 

conditions over 
impedance tuning 
range
3Linearity
3Reliability

8:1 Antenna Impedance ΓANT Matched to ΓTUNED

Tuned VSWR at Peak Voltage vs. Γ  Phase
DTC1 & DTC2
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Core Element - Digitally Tunable Capacitor

Performance Attributes
p Tuning range of 4:1
p Capacitor range 2pF to 8pF
p Typical Q = 60 @ 1GHz

Device Features
p Single monolithic die
p Solid state implementation
p Direct connect to VBAT

p Simple serial control interface
p Proven UltraCMOS™ process

p >700M devices manufactured

p DTC can be directly integrated 
within more complex RFICs
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Creating the ‘Virtual HBT’ in UltraCMOS

p Using device stacking, a virtual high-voltage three-terminal device can be 
realized
h Can be operated in either linear or switched mode
h Complex control and linearization schemes can be implemented

3 Analog, Digital linearization/pre-distortion techniques

HBT PA Implementation CMOS PA Implementation
VBATT

B
ia

s
Virtual HBT

VBATT
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Power Amplifiers – Switched & Linear Synergy
p Critical to reducing the number of power Amplifiers is 

Multi-Mode Operation from a single amplifier
h Constant Envelope versus high Peak-to-Avg Ratios (PAR)

p Common Final Amplifier Stage Performance
h Pout & PAE performance maintained across multiple 

access schemes
PAE (%) vs Pout (dBm)
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Complete Integration of GSM PA with Controller
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Physical Implementation

p Monolithic Integration of the GSM APC function
p Rugged into any load condition at max power

LB PAHB PA
Vreg

Control and Bias
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GSM 850 – Power vs. Time @ 3 V Vbatt

• Large power control range > 75dB
Tx/Rx Switch doesn’t have to be sequenced to meet the time mask

• Well behaved analog power control
• Very repeatable results – multiple parts/multiple wafers

Over frequency and VBATT range
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GPRS Class 12 (50%)  Operation

Marker1 (Yellow Trace) @ Start = 34.58 dBm
Marker2 (Blue Trace) @ 5 minutes Later = 34.52 dBm

Delta = .06 dB
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Output Power & Total Efficiency vs. Pin

Measurement Conditions: Freq.=880 MHz, 1780MHz
VBATT=3.5V,  VRAMP=1.7V

• Outstanding Efficiency (best CMOS results, competitive with GaAs)

• Plenty of Output Power

• Pout independent of Pin

• Low Pout dependence on Temperature and VBATT

Low Band Pout, PAE vs. Pin
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WCDMA Linear PA Bias Generation
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p Provides optimum 
linearity performance
h ACLR, IP3

p Minimizes performance 
sensitivity to Process, 
VBATT, and Temp 
Variations

p Relies upon proven 
CMOS Analog & Digital 
design concepts to 
optimize operating 
points based upon PVT



19

Wireless Innovation Forum 2010

Conclusion

p Peregrine UltraCMOS has demonstrated tunability that 
addresses:
h Frequency band switching
h Impedance matching
h Output power optimization
h Access scheme/mode of operation
h Tuning for environmental effects

3 Proximity effects
3 Temp, Battery

p Integration of high performance RF with Digital and Analog 
circuitry is paramount to tunability
h Qcap > 60, Qind > 30 for 1-2GHz
h Ron-Coff Device FOM is continuing down CMOS scaling curve 

3 375 275 225 fS  (1 Ohm-mm, 275fF/mm)
3 FMAX 50GHz 100GHz


